If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+15k+6=0
a = 6; b = 15; c = +6;
Δ = b2-4ac
Δ = 152-4·6·6
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-9}{2*6}=\frac{-24}{12} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+9}{2*6}=\frac{-6}{12} =-1/2 $
| 2/3x-5/6=5/12x+1/4 | | x-4=5^2 | | -7x+-8x+-1x=8 | | -5(p-2)=10 | | x=+3x4−8 | | -7(2+3x)=-77 | | x^2-18x+21=-59 | | -8b-3b-6b+14b=-18 | | 2(54)+x=180 | | 20x+3x-22x=15 | | -10=-5+x/3 | | -19+-1x=20 | | 9x+5=175 | | 2(54)+1x=180 | | 3v-13=14 | | 60x+30=90 | | 3t+2t-1t+3t-5t=20 | | 1.4=5x(1-x) | | 2(54)+2x=180 | | 8w-6w+4w-5w=16 | | 17y-11y-5y=12 | | -4+5d=8d=14 | | 7x-7=3x+45=63 | | 4v-2=-2 | | 16w+1w-12w-4w=5 | | -5(7+7x)=280 | | 113-8x=8x+15 | | 2m-1m-1m+4m+1m=20 | | 8x+90=2x^2 | | 11x^2+6x-7=0 | | 21/2n+6=-11/2n-10 | | 2x/x+9=x-2/x-1 |